WIN32/INDUSTROYER

A new threat for
Industrial control systems

o SARER TECHNOLOGY Win32/Industroyer

Contents

Win32/Industroyer: a new threat for industrial control systems 2
Main backdoor. 3
Additional backdoor 4
Launchercomponent. 5
101 payload component 6
104 payload component 7
61850 payload component. 10
OPCDA payload component 12
Data wiper Component. 13
Additional tools: port scannertool L. 14
Additional tools: DoSTool 15
Conclusion 15
Indicators of compromise (IoC). 15

o
ENJOY SAFER TECHNOLOGY

Win32/Industroyer

Win32/Industroyer: a new threat for
industrial control systems

Win32/Industroyer is a sophisticated piece of malware designed to disrupt
the working processes of industrial control systems (ICS), specifically
industrial control systems used in electrical substations.

Those behind the Win32/Industroyer malware have a deep knowledge

and understanding of industrial control systems and, specifically, the
industrial protocols used in electric power systems. Moreover, it seems very
unlikely anyone could write and test such malware without access to the
specialized equipment used in the specific, targeted industrial environment.

Support for four different industrial control protocols, specified in the
standards listed below, has been implemented by the malware authors:

IEC 60870-5-101 (aka IEC 101)

IEC 60870-5-104 (aka IEC 104)

IEC 61850

OLE for Process Control Data Access (OPC DA)

In addition to all that, the malware authors also wrote a tool that
implements a denial-of-service (DoS) attack against a particular family of
protection relays, specifically the Siemens SIPROTEC range.

All this considered, the Win32/Industroyer malware authors show an
intensive focus that suggests they are highly specialized in industrial
control systems.

The capabilities of this malware are significant. When compared to the
toolset used by threat actors in the 2015 attacks against the Ukrainian
power grid which culminated in a black out on December 23, 2015
(BlackEnergy, KillDisk, and other components, including legitimate
remote access software) the gang behind Industroyer are more advanced,
since they went to great lengths to create malware capable of directly
controlling switches and circuit breakers. We have seen indications that

this malware could have been the tool used by attackers to cause the
power outage in Ukraine in December 2016, although at the time of
writing, it is not confirmed, and the investigation is still ongoing. The
infection vector remains unknown.

The malware contains multiple modules, as analyzed and described in the
next sections of this whitepaper. However, before diving into those details,
the following simplified schematic shows the connections between the
components of the malware.

ADDITIONAL
BACKDOOR

INSTALLS

MAIN BACKDOOR

CONTROLS ADDITIONAL
TOOLS

INSTALLS

EXECUTES é DATA WIPER

EXECUTES

101 PAYLOAD 104 PAYLOAD 61850 PAYLOAD OPC DA PAYLOAD

Figure 1. Simplified schematic of Win32/Industroyer components.

While some components (e.g. Wiper) are similar in concept to the 2015
BlackEnergy attacks against power grid companies in Ukraine, we don't see

any link between those attacks and the code in this malware.

http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/protection/pages/overview.aspx
https://www.welivesecurity.com/2016/01/03/blackenergy-sshbeardoor-details-2015-attacks-ukrainian-news-media-electric-industry/
https://www.welivesecurity.com/2016/01/03/blackenergy-sshbeardoor-details-2015-attacks-ukrainian-news-media-electric-industry/

o
ENJOY SAFER TECHNOLOGY

Win32/Industroyer

Main backdoor

We refer to the core component of Industroyer as the main backdoor. The
main backdoor is used by the attackers behind Industroyer to control all
other components of the malware.

As backdoors go, this component is pretty straightforward, connecting

to its remote C&C server using HTTPS and receiving commands from

the attackers. All analyzed samples are hardcoded to use the same proxy
address, located in the local network. Thus, the backdoor is clearly designed
to work only in one specific organization. It is also worth mentioning that
most of the C&C servers used by this backdoor are running Tor software.

Perhaps the most interesting feature of this backdoor is that attackers

can define a specific hour of the day when the backdoor will be active.

For example, the attackers can modify the backdoor in this way so it will
communicate with its C&C server only outside working hours. This can make
detection based only on network traffic examination harder. However, all the
samples analyzed so far are set to work 24 hours round the clock.

1[int main_loop{)

24
struct _SYSTEWTIME SystemTime; /7 [esp+0Oh] [ebp-14h]@s
DWORD dwMilliseconds; f/ [esp+18h] [ebp-4h]@2

if { GetLastError{) *= ERROR_ALREADY_EXISTS)

{
duwiilliseconds = 5808;
SetUnhandledExceptionFilter{(TopLevelExceptionFilter);
if (tGetSystembetrics(SH_CLEANBOOT))

3
I
5
6 SetLastError{8);
7
8
9

if { create_imapi_handle() }
14 {

15 while ¢ 1)

16 £

17 do

18 {

19 Sleep{duMilliseconds};

20 GetLocalTime(&SystemTime);

21 3

22 while { SystemTime.wHour >= 24u };
23 c¢2_connect_and_execute_cmd{&duiilliseconds);
24 3

25 H

26 H

27 ¥

28 return 8;

29)

Figure 2. The decompiled main backdoor code has a check for time of the day.

Once connected to its remote C&C server, the main backdoor component
sends the following data in a POST-request:

 the globally unique identifier (GUID) string for the current hardware
profile retrieved via GetCurrentHwProfile

 the version of the malware: 1.1e

* the hardcoded ID of the sample

* the result of any previously-received command

The hardcoded ID is used by the attacker as an identifier for the infected
machine. Across all analyzed samples we found the following hardcoded ID
values:

* DEF

e DEF-C

e DEF-WS
 DEF-EP

* DC-2-TEMP
e DC-2

e CES-MCcA-TEMP
* CES

* SRV_WSUS

e SRV_DC-2

* SCE-WSUSO1

The main backdoor component supports the following commands:

CommandID Purpose

0 Execute a process

1 Execute a process under a specific user account.
Credentials for the account are supplied by the
attacker

2 Download a file from C&C server

3 Copy afile

ENJOY SAFER TECHNOLOGY

Win32/Industroyer

CommandID Purpose

4 Execute a shell command

5 Execute a shell command under a specific user
account. Credentials for the account are supplied
by the attacker

6 Quit

7 Stop a service

8 Stop a service under a specific user account.

Credentials for the account are supplied by
the attacker

9 Start a service under a specific user account.
Credentials for the account are supplied by
the attacker

Replace "Image path" registry value for a service

10

Once the attackers obtain administrator privileges, they can upgrade
the installed backdoor to a more privileged version that is executed as

a Windows service program. To do this they have to pick an existing, non-
critical Windows service and replace its Tmage Path registry value with
the path of the new backdoor’s binary.

The functionality of the main backdoor that works as a Windows service
is the same as just described. However, there are two small differences:
first the backdoor’s version is 1.1s, instead of 1.1e, and second, there is code
obfuscation. The code of this version of the backdoor is mixed with junk
assembly instructions.

.text:088483FD2 main_func proc near ; CODE XREF: WinMain(x,x,x,x)+14Tp
.text:804083FD2 H .text:ﬂﬂhﬂSSCth
.text:po403FD2 call §+5

.text:88483FD7

.text:00403FD7 loc_4@3FD7: ; CODE XREF: main_func+57}j
.text:00483FD7 5 main_func+5FLj
text:804083FD7 add esp, 4

.text:88483FDA push ebp ; lpOverlapped
.text:88483FDB

.text:80483FDD cmp edx, 14Z2F9F9Ah

.text:88483FE3 jz short loc 484823

.text:08403FES push eCH

.text:88483FEG push ecx

.text:804B3FE7 novy eax, [ebp+18h]

.text:80483FEA mov dword_416198, eax

.text:884B3FEF nov eax, [ebp+8]

.text:804083FF2 mov dword_416194, eax

.text:88483FF7 Mo EF ehp+GChH

.text:084840800 jz short loc 484823

.text:op4p4802 mowy plverlapped, eax

.text: 884040807 mov [ebp-8], eax

.text:aa404000 lea eax, [ebp-8]

.text :88404806D push eax 5 lpServiceStartTable
.text:0040400E nov dword ptr [ebp-4], offset ServiceMain
-text:a0484015 call ds:StartServiceCtrlDispatcherV

.text:g048401B Xor al, al

-text: 00404810 noy esp, ebp

.text:8840481F pop ebp

-text: 00484028 retn

Figure 3. The obfuscated assembly code of the main backdoor that works as
a Windows service.

Additional backdoor

The additional backdoor provides an alternate persistence mechanism that
allows the attackers to regain access to a targeted network in case the
main backdoor is detected and/or disabled.

This backdoor is a trojanized version of the Windows Notepad application.
This is a fully functional version of the application, but the malware authors
have inserted malicious code that is executed each time the application is
launched. Once the attackers gain administrator privileges, they are able to
replace the legitimate Notepad manually.

The inserted malicious code is heavily obfuscated, but once the code is
decrypted it connects to a remote C&C server, which is different to the one
linked in the main backdoor, and downloads a payload. This is in the form

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685967(v=vs.85).aspx

Win32/Industroyer

of shellcode that is loaded directly into memory and executed. In addition,
the inserted code decrypts the original Windows Notepad code, which

is stored at the end of the file, and then passes execution to it. Thus, the
Notepad application works as expected.

-text:81064AD5 lea eax, [ebp+var_ 58] . text:81084AD5 lea eax, [ebp+var_58]
-text:01064AD8 push eax - text:81084AD8 push eax

-text:81064AD9 lea eax, [ebp+h] - text:81084AD9 lea eax, [ebp+h]

-text:81064ADC push eax - text:81084ADC push eax

-text:61064ADD push [1:3:01] - text:81084ADD push 8B Bh

-text:01064AE2 push hund - text:81084AE2 push h¥nd

-text:01004AE8 nou stru_180A680.15tructSize, 58h f.text:B1004AES mou stru_1080a680.1StructSize, S58h
-text:01004AF2 nou stru_1688A6868.hwnd0wner, edx - text:81084AF2 mou stru_100A688._hwndOuner, edx
-text:01004AF8 nou stru_180A680.nHaxFile, 184h - text:01004AF8 mou stru_180a680.nHaxFile, 184h
-text:81064802 nou stru_180A580.15tructSize, 28h |.text: 81004862 mou stru_180A500.1StructSize, 28h
-text:81064B0C nou stru_16868A5868.hwnd0wner, edx . text:810084B6C mou stru_100A588._hwndOuner, edx
.text:B1004B12 call esi ; SendHMessageW . text: 010884812 call esi ; SendMessagell
-text:81064814 push [ebp+uar_58] . text: 61004814 pusha

-text:-81064B17 push [ebp+h] . text: 010084815 push¥

-text:-81064B1A push 881h . text: 010084816 neg ebx

text:810804B1F push hund .text: 01004818 shr eax, 1

.text:810804825 call esi ; SendHMessageW .text: 01004818 dec ebx

-text: 810084827 push ebx . text:01084B1C moy eax, 17B280AFh
-text:81004828 push ebx . text: 61004821 moy edi, 71CFC28h
-text:810084B29 push 8B7h . text: 010084826 or edi, dword_18895C7
-text:B1084B2E push hynd . text:01084B2C ®or esi, 1C779E91h
.text:8108084B34 call esi ; SendHMessageW . text: 010884832 Xor eax, eax

-text: 818084836 push ebx . text: 61004834 dec edi

-text:81064B37 call ds:GetKeyboardLayout . text: 010084835 rol esi, 5

-text:B108084B3D and ax, 3FFh .text: 01004838 and esi, edi

.text:01004B41 cmp ax, 11h .text: 01004837 and esi, edi

-text:01004B45 jnz short loc_1084B58 . text:01084B3C rol edx, 6

-text:01004B47 push 1 . text:010084B3F neg eax

-text: 818084849 push 1 . text: 61004841 xor esi, eax

-text:01064B4B push an8h . text: 01084843 neg ebx

.text:8108084B50 push hund . text:B10084BLE shr ebx, 5

.text:810804B56 call esi ; SendHMessageW .text: 01004848 mov ecx, SE?5422h

Figure 4. Comparison between original Notepad binary code (at the left)
and backdoored binary code.

Launcher component

This component is a separate executable responsible for launching the
payloads and the wiper component.

The Launcher component contains a specific time and date. Analyzed
samples contained two dates, 17" December 2016 and 20" December 2016.
Once one of these dates is reached the component creates two threads.
The first thread makes attempts to load a payload DLL, while the second
thread waits one or two hours (it depends on the Launcher component
version) and then attempts to load the Wiper component. The priority for
both threads is set to THREAD PRIORITY HIGHEST, which means that
these two threads receive a higher than normal share of CPU resources
from the operating system.

The name of the payload DLL is supplied by the attackers via a command
line parameter supplied in one of the main backdoor’s “execute a

shell command” commands. The Wiper component is always named
haslo.dat. The expected command lines are of the form:

$LAUNCHER%.exe %WORKING DIRECTORY% %PAYLOADS.d1l1
$CONFIGURATIONS.ini

Each argument on the command line represents the following:

* $LAUNCHERS.exe is the filename of the Launcher component

* $WORKING DIRECTORY% is the directory where the payload DLL and
configuration is stored

* %PAYLOAD%.d11 is the filename of the payload DLL

* 3CONFIGURATIONS%.ini isthe file that stores configuration data for the
specified payload. The path to this file is supplied to the payload DLL by
the Launcher component

The payload and wiper components are standard Windows DLL files.
In order to be loaded by the Launcher component they must export a
function named Crash as seen in Figure 5.

Win32/Industroyer

; Export directory for Crash161.dll

dd @ ; Characteristics
dd S855F8EDh ; TimeDateStamp: Sun Dec 18 82:48:13 2816
dw 8 ; MajorVersion
duw 8 ; HinorUersion
dd rva aCrashi161_dll ; Hame
dd 1 ; Base
dd 1 5 HumberOfFunctions
dd 1 ; HumberDfHames
dd rva off_1868355F8 ; AddressOfFunctions
dd rva off_188355FC ; AddressOfHames
dd rva word_16835600 ; AddressOfHameOrdinals
; Export Address Table for Crashi161.dll
of f_180355F8 dd rva Crash ; DATA XREF: .rdata:108355ECTo
; Export Hames Table for Crash181.dll
off_188355FC dd rva aCrash ; DATA XREF: .rdata:18@8355F@To
; "Crash"
; Export Ordinals Table for Crash181.dll
word_18835688 duw 8 ; DATA XREF: _rdata:188355F4To
atrash181_dll db ‘Crashi161.d11°,8 ; DATA XREF: .rdata:108355DCTo
acrash db ‘Crash’,8 ; DATA XREF: .rdata:off_180355FCTo

Figure 5. Example payload DLL that has internal name Crash101.d11
and crash export function.

101 payload component

This payload DLL has the filename 101.d11 and is named after IEC 101 (aka
IEC 60870-5-101), an international standard that describes a protocol for
monitoring and controlling electric power systems. The protocol is used for
communication between industrial control systems and Remote Terminal
Units (RTUs). The actual communication is transmitted through a serial
connection.

The 101 payload component partly implements the protocol described in
the IEC 101 standard and is able to communicate with an RTU or any other
device with support for that protocol.

Once executed, the 101 payload component parses the configuration
stored in its INI file. The configuration may contain several entries: process

name, Windows device names (usually COM ports), number of ranges,

and Information Object Address (I0OA) range values. IOA is a number that
identifies a particular data element in the device. Figure 6 illustrates a 101
payload configuration file with two defined IOA ranges, 10-15 and 20-25.

101_config.ini

real_process.ex
CoM1

CoM2

CoM3

Figure 6. An example of a 101 payload DLL configuration.

The name of the process specified in the configuration belongs to an
application the attackers suspect is running on the victim machine. It
should be the application the victim machine uses to communicate
through serial connection with the RTU. The 101 payload attempts to
terminate the specified process and starts to communicate with the
specified device, using the CreateFile, WriteFile and ReadFile
Windows API functions. The first COM port from the configuration file is
used for the actual communication and the two other COM ports are just
opened to prevent other processes accessing them. Thus, the 101 payload
component is able to take over control of the RTU device.

This component iterates through all defined IOA ranges. For each such
IOA it constructs “select and execute” packets with a single command
(c_sc_Na 1)anddouble command (C_DC_NA 1)and sends it to the RTU
device. The main goal of the component is to change the On/Off state of
single command type IOA and double command type IOA. Specifically, the
101 payload has three stages: in the first stage this component attempts

https://en.wikipedia.org/wiki/IEC_60870-5#IEC_60870-5-101

(es3

Win32/Industroyer

to switch IOAs to their Off state, in the second stage it attempts to invert
IOA states to On, and in the final stage the component switches IOA
states to Off again.

hex viewer
8

3 A E F 0123456789ABCDEF

]
o]
(=]

objecttree

~startBytel = @x68

-blocklength = 8x9

~blocklengthCopy = @x9

-startByte? = Bx68

d-controlField [ControlField]

Emdi' = false

: 1 = true

= true

¢ = true
wfunctionCode = USER_DATA_CONFIRM_EXPECTED

-linkaddress = @x1

~typeldentificaticn = C_DC_NA_1

d-variablestructureQualifierField [StructureQualifierField]

Emsq = false

fnumber = @x1

d-causelfTransmissionField [CauseQfTransmissionField]
LtestBit = false
EmpcsitiueﬂegatiueCcnfi'wBit = false
fcauseDfTransmission = ACTIVATION

-asdubddress = @xd

~informationObjectiddress = @xA

d-dco [DoubleCommandType]

fse = SELECT
qualifierOfCommand = NO_ADDITIONAL_DEFINITION
i~doubleCommandState = COMMAND_OFF

~checksum = @x34

~stopByte = @x16

Figure 7. An example of a dissected 101 payload packet in Kaitai Struct WebIDE.

104 payload component

This payload DLL has the filename 104.dIl and is named after IEC 104 (aka
IEC 60870-5-104), an international standard. The IEC 104 protocol extends
IEC 101, so the protocol can be transmitted over a TCP/IP network.

Due to its highly configurable nature, this payload can be customized
by the attackers for different infrastructures. Figure 8 shows what a
configuration file may look like.

104.ini

Figure 8. An example of 104 payload DLL configuration.

Once executed, the 104 payload DLL attempts to read the configuration
file. As described above, the path for the configuration file is supplied by
the Launcher component.

The configuration contains a STATION section followed by properties that
configure how 104 would work. The configuration may contain multiple
STATION entries.

Our analysis of this component reveals the following possible configuration
properties:

https://en.wikipedia.org/wiki/IEC_60870-5#IEC_60870-5-104

o
ENJOY SAFER TECHNOLOGY

Win32/Industroyer

Property Expected value Purpose Property Expected value Purpose
target_ip IP address The IP address that will be used for range Specific format of Specifies range of Information

the communication using IEC 104 IOAs Object Addresses (IOA)

protocol standard sequence Specific format of Specifies sequence of Information
target_port Port number Self-explanatory IOAs Object Addresses (IOA)
uselog lor0 Enables or disables logging to a file shift Specific format of Specifies shift of Information Object
logfile Filename Specifies the filename for the log, if IOAS Addresses (I0A)

enabled . .
stop_comm._ Tor O Enables or disables termination of Once the conﬁgurapon fileis rgad, the 104 paylgad creates a thread for
sarvice the process each STATION section defined in the.conﬁgurann file, one.per thrgad. In

: - each such thread, the 104 payload will attempt to communicate with the
stop._comm_ Process name Speoﬁe; the process name that wil specified IP address using the protocol described in the IEC 104 standard.
Service_name be terminated Before the connection is made, the 104 payload attempts to terminate the
timeout Timeout in Specifies timeout between send and legitimate process that is normally responsible for IEC 104 communication
milliseconds recv calls. Default value: 15000 with the device. It does so only if the stop comm service property is
socket_timeout Timeoutin Specify the receiving timeout. specified in its configuration. By default, the 104 payload terminates the
milliseconds Default value: 15000 process named D2MultiCommService.exe, Or the process name specified

silence lorO Enables or disables console output in its configuration.
asdu Integer Specifies ASDU (Application Service The main idea behind the 104 payload is relatively simple. It connects to

Data Unit) address also known as the specified IP address and starts to send packets with the ASDU address

sector that was defined in its configuration. The goal of this communication is to
first_action on or off Specifies the Switch value in ASDU interact with an IOA of a single command type.

packet for first iteration) .
change Tor O Specifies that the Switch value in In the configuration file, the attacker can define the operation property

ASDU packet should be inverted
during iterations

command_type

def or short or
long

Specifies command pulse duration
for qualifier of command (QOCQ)

operation

range or
sequence or shift

Specifies iteration type for
Information Object Addresses (I0OA)

to specify exactly how single command type I0As will be iterated.

The first such operation mode is the range mode. The attackers use

this mode in order to discover possible IOAs in the targeted device. The
attackers have to take this approach because the protocol described in
the IEC 104 standard does not provide a specific method to obtain such
information.

The range mode has two stages. During the first stage, once the range of
IOAs is obtained from the configuration file, the 104 payload connects to

(es[FD)

Win32/Industroyer

the target IP address and starts to iterate through the specified I0As. To
each such IOA the 104 payload sends “select and execute” packets in order
to switch the state and to confirm whether the IOA belongs to the single
command type.

> Internet Protocol Version 4, Src: 192.168.8.1, Dst: 192.168.8.2
» Transmission Control Protocol, Src Port: 2484, Dst Port: 49168, Seq: 39, Ack: 45, Len: 16
» IEC 6@878-5-184-Apci: -> I (2,2)
4 TEC 6@87@-5-184-Asdu: ASDU=1 C_SC_NA_1 ActTerm IOA=1@ 'single command’
TypelId: C_SC_NA 1 (45)

Beve wuun = 5Q: False

.BE8 8881 = NumIx: 1

..B@ 1818 = CauseTx: ActTerm (1@)

.@.. = Negative: False

Berr vunn = Test: False

oA @

Addr: 1

4 I0A: 1@
I0A: 1e

4 500: exal
....... 1 = ON/OFF: On
.88 88.. = QU: No pulse defined (@)
Burr wunn = 5/E: Execute

Figure 9. An example of a dissected 104 payload packet in Wireshark.

Once all possible IOAs from the specified range are iterated, the 104
payload switches to the second stage of range mode. If logging is enabled,
the payload writes starting only success to the log. The rest of this
second stage is an infinite loop that uses the previously discovered IOAs of
single command type. In the loop the payload constantly sends “select and
execute” packets. In addition, if the option change is defined, the payload
flips the On/OfT state between loop steps.

Figure 10 demonstrates the log file that was produced by the 104 payload
during our analysis. It shows the payload iterated IOAs from 10 to 15, and
once I0As of the single command type were discovered, the payload
started to use them in the loop. The configuration had the change option
enabled, so between loop iterations the payload flipped the switch value
from On to Off and wrote it to the log.

BB Hiew: logfile.txt

Current switch value:0N

Found:

Search control signals ...

done:

done:

done:

done: 14

done: 155tarting only success:

and try
and try
and try
and try
and try

Found
Found
Found
Found
Found

Done:
Done:
Done:
Done:
Done:
Switch value:0FF

10
11
13

Done:
Done:
Done:

Figure 10. Example log file produced by the 104 payload

The second operation mode is the shift mode. This is very similar to
the range mode. The attacker defines, in the configuration file, a range of
IOAs and shift values. Once the 104 payload is activated it does everything
the same way as in range mode; however, once all IOAs in the defined
range are iterated, it starts to iterate over the new range. The new range is
calculated by adding the shift values to the default range values.

The third operation mode is the sequence mode. It can be used by
attackers once they know the values of all IOAs of the single command
type that are supported by the connected device. This payload immediately
executes an infinite loop, sending “select and execute” packets to the I0As
defined in the configuration file.

(es3

Win32/Industroyer

Aside from its logging capability, the 104 payload can output debug
information to the console, as seen in Figure 11.

IEC-184 client:
MSTR ->> SLU

HSTR <<{- SLU

MSTR ->> SLU
peB1

MSTR <{<{- SLU
81

MSTR ->> SLU

ip=127.8.0.1; port=2484; ASDU=1

127.8.8.1:2484
x68 xB4 xB7 xBB xB@ xB@

U{Bx3> | Length:6 hytes |
STARIDT act

127.8.8.1:2484
x68 xB4 xBB xB8 xBB xBA

U{Ax3> | Length:6 bytes |
STARIDT con

127.8.8.1:24684

x68 xBE xB8 xBB xB8 xBB x2D xB1 x86 xBB xB1 xBB xBA xBB xB@

I1¢Bx8>
ASDU:=1 | OA:8 | I0A:1@
Cause: Activation <x62>

! S8ent=A | Received=8

! Length:16 hytes
'
H

i Telegram type: M_SC_HNA_1 (x2D>

127.8.8.1:2464

x68 xBE xB8 xBB xB2 xBB x2D xB1 =87 xBB8 xB1 xBB xBA xBO xB@

I{BxB> | Length:16 hytes
ASDU:1 | OA:@ | IOA:=1@ |
Cause: Activation confirm (x72>

! 8ent=B | Received=1
i Telegram type: M_SC_HNA_1 <(x2D>

127.8.8.1:2484
x68 xB4 xB1 xBA x84 xB@

5(BAx1> ! Length:6 hytes 1|

Figure 11. The console output of the 104 payload.

-10 -

61850 payload component

Unlike the 101 and 104 payloads, this payload component exists as a
standalone malicious tool comprising an executable named 61850 .exe
and the DLL 61850.d11. Itis named after the [EC 61850 standard. This
standard describes a protocol used for multivendor communication among
devices that perform protection, automation, metering, monitoring, and
control of electrical substation automation systems. The protocol is very
complex and robust, but the 61850 payload uses only a small subset of the
protocol to produce its disruptive effect.

Once executed, the 61850 payload DLL attempts to read the configuration
file, the path to which is supplied by the Launcher component. The
standalone version defaults to reading its configuration from i.ini. The
configuration file is expected to contain a list of IP addresses of devices
capable of communicating via the protocol described in the IEC 61850
standard.

If the configuration file is not present, then this component enumerates all
connected network adaptors to determine their TCP/IP subnet masks. The
61850 payload then enumerates all possible IP addresses for each of these
subnet masks, and tries to connect to port 102 on each of those addresses.
Therefore, this component has the ability to discover relevant devices in the
network automatically.

Otherwise, if a configuration file is present and it contains target IP
addresses, this component connects to port 102 on those IP addresses and
on IP addresses that were discovered automatically.

Once this component connects to a target host, it sends a Connection
Request packet using the Connection Oriented Transport Protocol, as seen
in Figure 12.

https://en.wikipedia.org/wiki/IEC_61850

o
ENJOY SAFER TECHNOLOGY

Win32/Industroyer

-
M Wireshark - Packet 5 - 61850

» Internet Protocol Version 4, Src: 192.168.8.2, Dst: 192.168.9.1 -~
» Transmission Control Proteocol, Src Port: 49195, Dst Port: 102, Seq: 1, Ack: 1, Len: 22
> TPKT, Version: 3, Length: 22 pl
4 IS0 B@73/X.224 COTP Connection-Oriented Transport Protocol

Length: 17

PDU Type: CR Connect Request (@x@e)

Destination reference: @xeeee

source reference: exeeel

8089 = Class: @

.. ..B. = Extended formats: False

....... @ = No explicit flow control: False

Parameter code: src-tsap (@xcl)

Parameter length: 2

Source TSAP: 8088

Parameter code: dst-tsap (@xc2)

Parameter length: 2

Destination TSAP: @e@el

Parameter code: tpdu-size (@xc@)

Parameter length: 1

TPDU size: 1824 i

m

29 31 ff a4 8 00 45 @8
@8 B8 c@ a3 8@ B2 c@ ad
bc f1 f5 58 1d 38 5@ 18
ee 16 11 [T ee 20 eo o1
el co ol @a

0o00 @@ @c 29 a7 11 bc 88 ec

¢ 88 3e @2 1b 40 @@ 38 B6
AEZ0 @8 @l c@ 2b 8@ 66 ea b4
@038 48 20 31 34 02 e B3 °e
0040 8@ cl 82 89 9@ c2 B2 P

No.: 5 - Time: 4.896445 - Source: 192.168.0.2 - Destination: 192.168.0.1 - Protocol: COTP - Length: 76 - Info: CR TPDU sre-ef: (0001 dst-ref 0000

Figure 12. A dissected Connection Request packet in Wireshark

If the target device responds appropriately, the 61850 payload then sends
an InitiateRequest packet using the Manufacturing Message Specification
(MMS). If the expected answer is received, it continues, sending an MMS
getNameList request. Thereby, the component compiles a list of object
names in a Virtual Manufacturing Device (VMD).

Next, this component enumerates the objects discovered in the previous
step and sends the device domain-specific getNameList requests with
each object name. This enumerates named variables in a specific domain.

-1 -

)

Internet Protocol Version 4, Src: 192.168.8.2, Dst: 192.168.8.1 -
Transmission Contrel Protocol, Src Port: 49195, Dst Port: 182, Seq: 278, Ack: 121, Len: 62
TPKT, Version: 3, Length: 62 .
IS0 8873/X.224 COTP Connection-Oriented Transport Protocol
IS0 8327-1 0SI Session Protocol
IS0 8327-1 05I Session Protocol
IS0 8823 0SI Presentation Protocol
MMS
4 confirmed-RequestPDU
invokeID: 2
4 confirmedServiceRequest: getNamelist (1)
4 petNamelist
» extendedObjectClass: objectClass (@)
4 gbjectScope: domainSpecific (1)
domainSpecific: NAME_GOES_HERE m

-
‘ Wireshark - Packet 13 . 61850

[

m

2@ 48 @@ 5@ es
2b @@ 66 ea b4
ac 88 8@ 83 e.
38 2f 82 el e3

B8 2a
bd fe
B8 3e
a@ 2a

c@ at @@ @2 cé asd
fs 5@ 1d be 56 18
82 fo 80 @1 @0 B1

a@ 28 82 8l 82 al

@@5@8 23 a® @3 86 81 @9 al 1c 81 la _
sl 3 5T 48 45 52 45 20 20 20 208 20 28 28 29 B
Be7e 28 =

No.; 13 - Time: 2251961 - Source: 192.168.0.2 - Destingtion: 192. 168.0.1 - Protocol: MMS - Length: 116 - Info: confirmed-RequestPDL!

SaKpbITE

Figure 13. The dissected MMS getNameList request in Wireshark.

Afterwards, the 61850 payload parses data received in response to these
requests, searching for variables that contain following strings:

CSW, CF, Pos, and Model

CSW, ST, Pos, and stVal

e CSW, CO, Pos, Oper, but not $T
e CSW, CO, Pos, SBO, but not $T

The string CSW is a name for logical nodes, which are used to control
circuit breakers and switches.

For variables that contain the Model or stVal string the 61850 payload sends
an additional MMS RrRead request. For some of the variables this component
may also issue an MMS write request that will change its state.

The 61850 payload produces a log file of its operations that contains the IP
addresses, MMS domains, named variables and the node states (open or
closed) of its targets.

https://en.wikipedia.org/wiki/Manufacturing_Message_Specification

ENJOY SAFER TECHNOLOGY

Win32/Industroyer

OPC DA payload component

The OPC DA payload component implements a client for the protocol
described in the OPC Data Access specification. OPC (OLE for Process
Control) is a software standard and specification that is based on Microsoft
technologies such as OLE, COM, and DCOM. The Data Access (DA) part of
the OPC specification allows real-time data exchange between distributed
components, based on a client-server model.

This component exists as a standalone malicious tool with the filename
OPC.exe and a DLL, which implement both 61850 and OPC DA

payload functionalities. This DLL is named, internally in PE export table,
OPCClientDemo.dl1, suggesting that the code of this component may be
based on the open source project OPC Client.

Export Address Table for OPCClientDemo.dll
£f_10039678 dd rva Crash ; DATA XREF: .rdata:1083966CTo
Export Hames Table for OPCClientDemo.dll

H
H
H
L1}
H
H
H
L1}

dd rva aCrash ; DATA XREF: .rdata:188394678To
; “Crash"

££_1003967C

Figure 14. The PE export reveals the internal DLL name of the OPC DA payload.

The OPC DA payload does not require any kind of configuration file.

Once executed by the attacker, it enumerates all OPC servers using the
ICatInformation: :EnumClassesOfCategories method with CATID
OPCDAServer20 category identifier and TOPCServer: :GetStatus to
identify the ones running.

Next the component uses the TOPCBrowseServerAddressSpace
interface to enumerate all OPC items on the server. Specifically, it looks for
items that contain the following strings in their name:

e ctlSelOn

e ctlOperOn

e ctlSelOff

e ctlOperOff

e \Pos and stVal

The names of these items may suggest that attackers are interested in
OPC items provided by OPC servers that belong to solutions from ABB,
such as their MicroSCADA range. Figure 15 demonstrates an example list of
OPC items that contain names with similar strings. This list of OPC items is
received by the OPC Process Objects List Tool from ABB.

File Edit Toolz Help
B [@ fd o« » o wl o = | 5 [FitedslinUse Userdefined atiibute: [None |
Object ‘ Obiject Identifier ‘ Sighal Text | Block/Bit addr. | Station [I{] =
52B200:P10 STA2 STAZB2 Breaker position indication 172 41 IECE1850 Subnetwork REF542_41 LD1.00C5WI Pos. sfval
52B200:P11 S5TA2 STAZB2 Breaker open selsct command 5 41 |ECE1850 Subnetwork REF542_41.LD1 QOCSWI Pas ctiSel0f
52B200:P12 S5TA2 STAZB2 Breaker close select command B 41 |ECE1850 Subnetwork REF542_41.LD1 QOCSWI Pas ctiSel0n
52B200:P13 STA2 STAZB2 Breaker open execute command 7 41 IECE1850 Subnetwork REF542_41 LD1.QOCSWI Pos. cti0perdif
52B200:P14 S5TA2 STAZB2 Breaker close execute command B 41 IECE1850 Subnetwork REF542_41 LD1.Q0CSWI Pos cti0periin
52B200:P15 5TA2 STAZBZ Breaker device control block 8 41 |ECE1850 Subnetwork. REFS42_41.L01.QOCSWI1.Beh.stval
52B200:P16 5TA2 STAZBZ Breaker open interlocked 0416 Ll
52B200:P17 S5TA2 STAZ2B2 Breaker close interlocked 0418 4
52B200:F18 5TA2 STAZBZ Cause of interlocking 1) Ll
S52B200:P19 STAZ STAZBZ Breaker selection on monitor 0 41
52B200:P20 5Ta2 STAZBZ Breaker command event 0416 41 |ECE1850 Subnetwork. REF542_41.LD7.00CSW11.Poz. Seld
52B200:P25 5Ta2 STAZBZ Breaker cancel command El 41 |ECE1850 Subnetwork. REF542_41.LD1.Q0CSWI1.Poz.ctiCan
52B201:P10 5Ta2 STAZBZ Disconn. position indication 1/4 41 |ECE1850 Subnetwork. REF542_41.LD1.Q1CSWI2 Pos. stval
52B201:F11 5Ta2 STAZEZ Disconn. open select command 50 4 |ECE1250 Subnetwork. REF542_41.LD1.Q1CSWI2 Pos. ctiS el0ff
S2B201:F12 5Ta2 STAZE2 Digconn. cloge select command 51 4 |ECE1250 Subnetwork. REF542_41.LD1.Q1CSWI2 Pos.ctiSelln
S2B201:F13 5Ta2 STAZEZ Disconn. open esecute commane 52 4 |ECE1250 Subnetwork. REF542_41.LD7.Q1CSWI2 Pos. ctiDperDf
S2B201:F14 5Ta2 STAZE2 Disconn. cloge erecute comman 53 4 |ECE1250 Subnetwork. REF542_41.LD1.Q1CSWI2 Pos. ctiDperOn
S2B201:P15 STa2 STAZEZ Disconn. device control block 7 41 IECE1850 Subnetwork REF542 41.LD7 Q1CSWI2 Beh.stVal

Figure 15. An example of OPC items names in IN field received using
OPC Process Objects List Tool.

The attackers use the string Abdul when they add a new OPC group.
Possibly this string is used by the attackers as a slang term when referring
to the ABB solutions.

https://en.wikipedia.org/wiki/OPC_Data_Access
https://en.wikipedia.org/wiki/Open_Platform_Communications
https://en.wikipedia.org/wiki/Open_Platform_Communications
https://sourceforge.net/projects/opcclient/
http://new.abb.com/
http://new.abb.com/substation-automation/products/software/microscada-pro

Win32/Industroyer

.text:6B269BCE push edi ; ppUnk
-text:6B269BCY push offset 1ID_IOPCGroupStatehigt ; riid
-text:6B269BCE push [ebp+pRevisedUpdateRate] ; pRevisedUpdateRate
-text:6B269BD1 mou ecx, [eax+h]
.text:6B269BD4 lea eax, [ebx+18h]
-text:6B269BD7 push eax 5 phServerGroup
-text:6B269BD8 push a ; dulCID
.text:6B269BDA lea eax, [ebp+pPercentDeadband]
-text:6B269BDD mou edx, [ecx]
-text:6B269BDF push eax ; pPercentDeadband
-text:6B269BEQ movzx eax, [ebp+arg_hu]
-text:6B269BE4 push a ; pTimeBias
-text:6B269BE6 push o ; hClientGroup
-text:6B269BE8 push [ebp+ppAddResults] ; duRequestedUpdateRate
-text:6B269BEB push eax ; bActive

B3I . text:6B269BEC push esi ; esi szHame
-text:6B269BED push BCx 5 This
.text:6B269BEE call [edx+I0PCServerUtbl.AddGroup] aabdul 8:
-text:6B269BF1 test eax, eax - unicode 8, <Abdul’,@
-text:6B269BF3 jns short loc_6B269C30
-text:6B269BF5 push offset aFailedToAddGro ; "Failed to Add group™

-text:6B269BFA
-text:6B269BFD

lea
call

ecx, [ebp+1pHultiByteStr]
error_

Figure 16. The disassembled code of the OPC DA component that uses the Abdul string.

On the final step, the OPC DA payload attempts to change the state of
discovered OPC items using the T0PCSyncI0 interface by writing the 0x01
value twice.

-text:AB4O3IAFE mov eax, UT_I2

-text:-80403583 mou word ptr [ebp+pltemUalues._anonymous_B8], ax
-text:-884083500 mou eax, 1

-text:Ap40350F mov word ptr [ebp+pltemUalues.anonymous_@+8], ax
-text:-884083516 lea eax, [ebp+pltemUalues]

-text:-ao48351C push eax ; pItemUalues
-text:ap40351D mov eax, [ebp+0PC_items]

-text:-004083523 moy ecx, [eax+esi=h]

-text:AB403526 call I0PCSyncI0_Write

.text:98840352B cmp esi, edi

-text:-a048352D jb short loc_AhB3539

-text:ap40352F push 8080708057h

-text:-00403534 call throw_exception

Figure 17. Disassembled code of OPC DA payload that uses TOPCSyncI0 interface.

The component writes the OPC server name, OPC item name state, quality
code and value to the log file. The logged values are separated with the
following headers:

* [*ServerName: %SERVERNAME%] [State: Before]
* [*ServerName: %SERVERNAME%] [State: After ON]
* [*ServerName: %SERVERNAME%] [State: After OFF]

~13-

Data wiper component

The data wiper component is a destructive module that is used in the final
stage of an attack. The attackers are using this component to hide their
tracks and to make recovery difficult.

This component has the filename haslo.dat or haslo.exe and can
be executed by the Launcher component or used as a standalone
malicious tool.

Once executed it attempts to enumerate all keys in the registry that list
Windows services:

e HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

It attempts to set the registry value TmagePath with an empty string in
each of the entries found. This operation will make the operating system
unbootable.

The next step is actual deletion of file contents. The component
enumerates files with specific file extensions on all drives connected to
computer, from C:\ to Z:\. It should be noted that during enumeration
the component skips files that are located in subdirectory that contains
Windows in its name.

The component rewrites file content with meaningless data obtained from
newly allocated memory. In order to perform this operation thoroughly the
component attempts to rewrite files twice. The first attempt happens once
the file is found on a drive. If the first attempt is unsuccessful then the wiper
malware makes a second attempt, but before that the malware terminates
all processes except those included in a list of critical system processes. The
list of these processes is displayed in Figure 18.

To speed up the wiping operation this component rewrites only partial file
content at the beginning of the file. The amount of data to be rewritten
depends on file size: the smallest amount of data will be rewritten for files
less than or equal to IMb (4096 bytes); the largest amount of data will be
rewritten for files less than or equal to 10Mb (32768 bytes).

(es3

Win32/Industroyer

Finally, this component attempts to terminate all processes (including
system processes) except its own. This will result in the system becoming

unresponsive and eventually crashing.

off_10010E88 dd offset

dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset
dd offset

Figure 18. List of processes that are not terminated on second rewriting attempt.

afudiodg_exe

aConhost_exe
aCsrss_exe
abum_exe

; DATA XREF: _terminate_processes:loc_10001470Tr

"audiodg .exe"

H
; "conhost.exe"

aExplorer_exe ;
; "lsass.exe"™

alsass_exe
aLsm_exe

asShutdouwn_exe ;

asmss_exe

aSpoolss_exe
aspoolsu_exe
aSvchost_exe

avininit_exe

“CSKFSS.exe™
“dwm.exe™

“explorer.exe”

; "lsm.exe"
aServices_exe ;

“services.exe"
“shutdown.exe”

; Usmss.exe”

; "spoolss._exe™
; "spoolsu.exe"
; "suchost.exe"
aTaskhost_exe ;

allinlogon_exe ;
; "wuauclt.exe™

aluauclt_exe

“taskhost.exe"

“wininit.exe"

“winlogon.exe”

The filename masks targeted by the data wiper component to be

overwritten are:

SYS_BASCON.COM *.pcmi * bak
Y *pcmt * bk
*PL *ini *bkp
* paf *xml *log
v *CIN *Zip
*XRF *ini *rar
*trc *.prj *tar
*SCL *.0xm *7z
*.bak *.elb *.exe
*.cid *.epl *dll
*.scd *.mdf

*.pcmp *|df

This list contains filename extensions that are used in a standard

environment, such as Windows binaries (.exe/.dll), archives (.7z /.tar/.rar/.

-14 -

zip), backup files (.bak/.bk/.bkp), Microsoft SQL server files (.mdf/.Idf),

and various configuration files (.ini/.xml). In addition, the component also
wipes files that may be used in industrial control systems, such as files
written using Substation Configuration description Language (.scl/.cid/.scd)
and there many files and file extensions that are used by various products
from ABB. For example, a file named sys BASCON.COM is used by ABB
solutions for storing configuration data, and files with the .paf (Product
Authorization File) filename extension are used to store license data
for ABB MicroSCADA products.

Additional tools: port scanner tool

The attackers’ arsenal includes a port scanner that can be used to map
the network and to find computers relevant to their attack. Interestingly,
instead of using software already existing, the attackers built their own
custom-made port scanner. As is evident from Figure 19, the attacker can
define a range of IP addresses and a range of network ports that are to be
scanned by this tool.

ER Administrator CA\Windows\system32\cmd.exe =NRE X

C:~>port.exe
Error params Arguments???
Exhample :App.exe —ip= 127.8.8.1-1868, 127.8.68.2-188 -ports= 86, 3351, 15-48

port .exe

(R

Figure 19. The port scanner tool usage example.

Additional tools: DoS Tool

Another tool from the attackers' arsenal is a Denial-of-Service (DoS) tool
that can be used against Siemens SIPROTEC devices. This tool leverages
the CVE-2015-5374 vulnerability in order to make a device unresponsive.
Once this vulnerability is successfully exploited, the device stops responding
to any commands until the device is rebooted manually.

https://en.wikipedia.org/wiki/Substation_Configuration_Language
https://ics-cert.us-cert.gov/advisories/ICSA-15-202-01

‘;aiﬁbrwqummmwm

Win32/Industroyer

To exploit this vulnerability the attackers hardcoded the device IP addresses
into this tool. Once the tool is executed it sends specifically crafted packets
to port 50,000 of the target IP addresses using UDP. The UDP packet
contains only 18 bytes.

00000000 : %% gg 00 P0-00 OO 0O 6O-00 PO OO 0V-00 00 00 00

00000010 :

Figure 20. Content of UDP packet used during exploitation of CVE-2015-5374.

Conclusion

The investigation behind the Ukrainian power outage last December is still
ongoing and it is currently not confirmed that the malware analyzed here
was the direct cause. Nevertheless, we believe that to be a very probable
explanation, as the malware is able to directly control switches and circuit
breakers at power grid substations using four ICS protocols and contains an
activation timestamp for December 17, 2016, the day of the power outage.

We can definitely say that the Win32/Industroyer malware family is an
advanced and sophisticated piece of malware that is used against industrial
control systems. However, it should be noted that the malware itself is just
a tool in hands of an even more advanced and very capable malicious actor.
Using logs produced by the toolset and highly configurable payloads, the
attackers could adapt the malware to any comparable environment.

The commonly-used industrial control protocols used in this malware
were designed decades ago without taking security into consideration.
Therefore, any intrusion into an industrial network with systems using
these protocols should be considered as “game over”.

~15 -

Indicators of Compromise (IoC)

SHA-1 hashes:

F6C21F8189CED6AEL50F9EF2E82A3A57843B587D
CCCCE62996D578B984984426A024D9B250237533
8E39ECA1E48240C01EE570631AE8F0C9A9637187
2CB8230281B86FA944D3043AE906016C8B5984D9
79CA89711CDAEDB16BOCCCCFDCFBD6AATES7120A
94488F214B165512D2FC0438A581F5C9E3BD4DAC
S5A5FAFBC3FEC8D36FD57B075EBEF34119BA3BEFEF04
B92149F046F00BB69DE329B8457D32C24726EE0Q0
B335163E6EB854DF5E08E85026B2C3518891EDAS

IP addresses of C&C servers:
195.16.88[.16
46.28.200[.]132
188.42.253[.143
5.39.218[.]152
93.115.27[.157

Warning! Most of the servers with these IP addresses were part of Tor
network which means that the use of these indicators could result in a
false positive match.

ENJOY SAFER TECHNOLOGY™

	Win32/Industroyer
A new threat for industrial control systems
	Main backdoor
	Additional backdoor
	Launcher component
	101 payload component
	61850 payload component
	OPC DA payload component
	Data wiper component
	Additional tools: port scanner tool
	Additional tools: DoS Tool
	104 payload component
	Conclusion
	Indicators of compromise (IoC)

