
© Arrigo Triulzi 2010 26th March 2010

The Jedi Packet Trick takes
over the Deathstar

(or: “taking NIC backdoors to the next level”)

Arrigo Triulzi
arrigo@sevenseas.org

1

© Arrigo Triulzi 2010

Previously on Project Maux

2006-2007 “the early years”

find out by accident about NIC offloading of checksum routines...
⇒ can we hook something to that?

Broadcom’s Tigon firmware says it is based on MIPS, the firmware is
downloadable from the Internet, there is no firmware installation
security and I happen to have a DECstation 3000 in the basement...
⇒ dbx and go!

transform a few cards into doorstops and eventually hook the IP
checksum...
⇒ 5 second sniffer in a circular buffer

2

© Arrigo Triulzi 2010

Previously on Project Maux

2007-2008 “Mummy, mummy, I want a shell!”

nVidia releases the CUDA development toolkit
⇒ the GPU becomes interesting

PCI-to-PCI transfers are not marshalled by the OS
⇒ PCI-to-PCI between the NIC and the GPU

the NIC gets to see the packets first
⇒ we use the checksum hook to interpret and forward

a PCI card has DMA over the whole RAM
⇒ we can play in memory and the OS shall never know

r00t, firmware, OS-independent

3

© Arrigo Triulzi 2010

Previously on Project Maux

2007-2008 net result:

nicssh

no installer

no GPU persistence

archimede:~/nicssh$ nicssh 10.4.4.233
Connecting to 10.4.4.233
ICMP Echo Reply from OS - no nicfw
archimede:~/nicssh$ nicssh 10.4.4.234
Connecting to 10.4.4.234
ICMP Echo Reply from nicfw (Windows system)
Requesting tcp/80 with cloaking
nicssh> ?
help memory* sniff* send* reboot cleanup
quit
nicssh>

4

Stop
press

: it is
 calle

d ASF
/RCMP an

d is

shipp
ed by

 defa
ult w

ith B
road

com card
s!

Allez
 Loïc

!

© Arrigo Triulzi 2010

Previously on Project Maux

2007-2008 “now what?”

Jedi Packet Trick: if I have two (vulnerable) NICs in a card
what can I possibly do? How about sending packets between
them over the PCI bus?

Driver Takeover aka “attack from below”: drivers tend to
assume that NICs will not attack them...

Installation and Persistence: “hey, click here to use my new
firmware” only works a few times, not at every boot...

5

© Arrigo Triulzi 2010

“I have a cunning plan”
(once again)

Jedi Packet Trick: “easy”

take over NIC1, inject nicssh, use nicssh to take over NIC2

magic packets travel between NIC1 and NIC2 over the PCI bus

Driver Takeover: OS-dependent, not for me

Installation: remote factory diagnostics

Persistence: EFI module

6

© Arrigo Triulzi 2010

Some preliminary notes

This is still not a funded project but
personal curiosity driven what-if research,

I am using the old stock of NICs I bought
back in 2008 to replace the doorstops,

The old motto still holds:
Given no prior knowledge, “the Internet”, a
cheap 10-pack of NICs and a PC can we
develop the ultimate rootkit?

7

© Arrigo Triulzi 2010

Deathstar Mk.I design

EAL level 1⋅1023 firewall with two NICs

NIC1 is the external interface

NIC2 is the internal interface

nVidia GPU

EFI BIOS

But of course, all firewalls have
gaming GPUs!... and an EFI BIOS!

vulnerable

8

© Arrigo Triulzi 2010

Jedi Packet Trick

nicssh extended with:

“findnic” to find other NICs on the system by scanning the PCI
bus (lifted code from BSD)

“grabnic” to take it over by injecting the modified firmware into
the other card simulating an OS pushing new firmware

“forward” to set up forwarding: like good old overlays it never
returns... this turns nicssh into a two-way pipe between NICs.
All magic packets are forwarded between NICs.

nice but... it requires a suitable GPU
9

© Arrigo Triulzi 2010

Jedi Packet Trick

10

archimede:~/nicssh$ nicssh 10.4.4.230
Connecting to 10.4.4.230
ICMP Echo Reply from nicfw (Linux system)
Requesting tcp/80 with cloaking
nicssh> ?
help memory* sniff* send* findnic* grabnic* forward*
reboot cleanup quit
nicssh> findnic 0 3 21
Hunting on bus0... nope
Hunting on bus3...
3:0:0: Tigon
5:0:0: Tigon
Hunting on bus21...
21:0:0: Intel 82571EB
21:0:1: Intel 82571EB
nicssh> grabnic 3:0:0
My man, it already runs nicfw!
nicssh> grabnic 5:0:0
Trying...done
nicssh> forward 3:0:0 5:0:0
Forwarding starting - shell being replaced now
I'm afraid. I'm afraid, Dave. Dave, my mind is going. I can feel it...

We want NI
C-to-NI

C!

We want NI
C-to-NI

C!

© Arrigo Triulzi 2010

Jedi Packet Trick
NIC-to-NIC requires

installation

PCI bus scan to locate other NICs

initiating a firmware update

pushing firmware to the other NIC

communication

PCI-to-PCI device data transfer

suitable marshalling of the above

11

© Arrigo Triulzi 2010

Jedi Packet Trick
The problems begin...

the space in the firmware is not huge so a
PCI bus scanner is not really on the books

where do I get the firmware image from?

how do I efficiently push it?

(assuming we solve the above) how do we
make sure our firewall bypass is not too
obvious?

12

© Arrigo Triulzi 2010

Firmware is small...

don’t perform a true PCI bus scan but cheat: we are looking for
cards which look like us so how about we restrict ourselves to
the identifiers we want?

and the image is large...

so why don’t we just copy our own image over since we are the
same NIC as we only scanned for close relatives?

Jedi Packet Trick

13

 Type: Ethernet Controller
 Bus: PCI
 Vendor ID: 0x10de
 Device ID: 0x0ab0
 Subsystem Vendor ID: 0x10de
 Subsystem ID: 0xcb79
 Revision ID: 0x00b1

© Arrigo Triulzi 2010

Jedi Packet Trick

Now we need to push the image: this takes
time and as it happens the NIC is non-
responsive...

we could wait for a reboot and push it as part of our NIC
initialisation routine?

wait for a quiescent time and then push it?

just make the firewall hang for 30 seconds
and who cares!

14

© Arrigo Triulzi 2010

Jedi Packet Trick
PCI-to-PCI transfer is simply a replacement
of the nicssh channel with one to the other
NIC, everything else stays the same.

Stealth is our middle name so we cannot
afford to have our NIC-to-NIC channel
reduce the performance of the firewall:

rate-limit the NIC-to-NIC channel to approx. 64kbps. This is
empirically slow enough that the kink during heavy load is not
too noticeable.

if the transfer rate from the driver starts getting heavy simply
shut the channel down.

15

© Arrigo Triulzi 2010

Jedi Packet Trick

16

Firmware

Maux

NIC

NIC

PCI
bus

OS driver

Firmware

Maux

Hook IP checksum

PCI-to-PCI

put packet on wire

© Arrigo Triulzi 2010

Jedi Packet Trick

So what?

complete bypass of any OS-based firewall as the OS is oblivious
to the traffic being passed between the NICs

How do you catch it then?

timing analysis is one possibility: the hidden channel will rob
your firewall of performance

IDS on both sides testing the validity of the ruleset

17

© Arrigo Triulzi 2010

Installation

Project Maux Mk. I & II suffered from a
major drawback: installation required admin
privileges to run the firmware update.

At the same time looking at the firmware
there were hints of a “remote update”
capability (at least in the cards I have).

18

© Arrigo Triulzi 2010

Installation

The “remote update” capability appears to be
linked to some sort of factory testing. Once
it completes it initiates a factory test on the
firmware.

The “remote update” works by sending a WOL
followed by a UDP packet in a special format
containing a header followed by as many
UDP packets as needed for the firmware.

19

© Arrigo Triulzi 2010

Installation

UDP is good and bad...

easy to spoof: we could send our firmware
updates from anywhere on the Internet

hard to confirm that the packet got there:
how do we know that all the parts of the
update got to the card?

Net result: it works in the lab.

20

© Arrigo Triulzi 2010

Installation

21

archimede:~/nicssh$ sudo nicssh -i nicfw.bin 10.4.4.230
Sending UDP magic to 10.4.4.230...done
ICMP Echo Reply from nicfw (Linux system)
Injection successful
archimede:~/nicssh$ nicssh -gi gpussh.bin 10.4.4.230
Connecting to 10.4.4.230
Preparing to send GPU code
ICMP Echo Reply from nicfw (Linux system)
Requesting GPU RAM injection
Sending GPU code...done
archimede:~/nicssh$ nicssh 10.4.4.230
Connecting to 10.4.4.230
[...]

© Arrigo Triulzi 2010

Installation

But is remote installation so important?

probably not: we have plenty of remote
vectors which can be used to push the
firmware at the OS level

once the initial install is done we can
leverage the remote firmware update
capability of the Jedi Packet Trick

22

© Arrigo Triulzi 2010

Persistence
(or “there’s a 2006 Intel iMac there doing nothing!”)

Intel iMacs come with EFI

EFI is modular

Apple has an EFI Dev Kit on their Developer
Connection...

Why don’t I write an EFI module to load the
NIC firmware and nicssh 2.0?

Why don’t I hide the EFI module on the
IDE/SATA disk?

23

© Arrigo Triulzi 2010

Persistence

EFI module design

responsible for loading NIC firmware

responsible for installing nicssh in GPU

responsible for maintaining hidden location
on IDE/SATA disk

All of the above still under development

24

© Arrigo Triulzi 2010

Persistence
What works?

EFI module which loads NIC firmware

EFI module which loads nicssh

What doesn’t work?

storing it on the IDE/SATA disk

loading the EFI module correctly

Looking at PGP WDE for OS X design for ideas...
25

© Arrigo Triulzi 2010

Putting it all together

A staged attack against a firewall

“remote update” over UDP to NIC1

firmware update of NIC2

push EFI module into SATA disk to defend
against NIC reflashing (we reflash it too!)

Initiate Jedi Packet Trick

26

© Arrigo Triulzi 2010

What now?

Attack cards with proper firmware security:

crypto vulnerabilities

bad key management (OEMs come to mind)

remote management (nice one Loïc!)

Go further... how about CPU µcode?

27

© Arrigo Triulzi 2010

µcode
Yet another cunning plan...

most modern CPUs have µcode update functionality to patch
errata in the CPU implementation

there is often more than one µcode update released during the
lifetime of the CPU

each CPU µcode update has to contain the previous ones plus
the new one

each erratum is known as manufacturers publish them

each µcode update states which errata are fixed by it

28

© Arrigo Triulzi 2010

µcode

Let’s say that your family contains a former
µcode guru

then, in theory, he could figure out some
µcode for a given set of errata

you could then look at the µcode before and
after the errata and, in theory, you could
have some known plaintext with which to
attack the µcode update...

29

© Arrigo Triulzi 2010

µcode

let’s say that with enough known plaintext
you recover the encryption key... then you
could start modifying µcode for injection

now you have to worry about reboots as
µcode updates are not persistent across
reboots (which is good for testing!)

EFI comes to the rescue there...

30

© Arrigo Triulzi 2010

µcode

The ultimate hack

modify the NIC firmware remotely

install nicssh for backdooring

push modified µcode which blocks anything we believe hostile
(e.g. using the GPU memory where our nicssh lives)

install EFI module for persistence of all the above

31

© Arrigo Triulzi 2010

Thanks
My family ∀ their ! patience while I play with
my toys (and for having a µcode guru in it),

Toby, Ryan and Brian for keeping the hard
questions coming,

Maya for project naming,

lcars for being my ever-present simulacrum,

C8H10N4O2

32

© Arrigo Triulzi 2010

References
Broadcom firmware development kit: http://www.broadcom.com/products/
communications_processors_downloads.php

Papers by John Heasman (ACPI, BIOS and PCI rootkits):

http://www.nextgenss.com/research/papers/
Implementing_And_Detecting_A_PCI_Rootkit.pdf

Network Interface Firmware Back Door with Tigon2, eEye Industry
Newsletter, 25th April 2007,
http://www.eeye.com/html/resources/newsletters/vice/VI20070425.html

A. Singh, Mac OS X Internals, Addison-Wesley, 2006,
http://osxbook.com/book/bonus/chapter4/efiprogramming/

Rowan Atkinson, “Blackadder”, BBC TV series.

33

