Nations states and military activities in cyberspace

Thomas Reinhold - reinhold@ifsh.de - cyber-peace.org

Institute for Peace Research and Security Policy Hamburg
A little bit of context

- Stuxnet 2010 and its aftermath
 - Protagonists with "cyber weapons arsenal"
 - Consequences for international security
- UNIDIR study 2013*
 - 47 states with military cyber programs
 - 10 states with dedicated offensive orientation
- NATO
 - Cyber attacks part of collective defence
 - Can raise article 5 of treaty
- New cyber strategy of the German federal ministry of defence
 - Establishing a new (possibly offensive) department for cyber capabilities

* United Nations Institute for Disarmament Research
Technological trends

- Computers everywhere
 - Automating (e.g. traffic control)
 - Centralisation (e.g. insurance database, health system...)
 - Digitalisation (e.g. elections, landline communication systems)
 - Optimisation (e.g. high speed stock exchange trading)

- Dependencies of IT services and infrastructure
 - Critical infrastructure
 - Governmental and federal services and administration
 - Civil communication
 - Basically all military systems
 - ...
The challenge of cyber security

- Security is always a fight against superior opponents
 - IT as an "easy" target
 - Necessity of connected services
 - Rapid technological progress vs. slow decision processes
 - Balancing available resources and the scope of protection
- The NSA and the reality of "omnipotent" attacker
The challenge of cyber security

• Security is always a fight against superior opponents
 • IT as an "easy" target
 • Necessity of connected services
 • Rapid technological progress vs. slow decision processes
 • Balancing available resources and the scope of protection
 • The NSA and the reality of "omnipotent" attacker

• Cyber security - the obvious concepts
 • Connecting the stakeholder
 • Capacity building and technological modernization
 • National obligation to report incidents
 • Incident sharing (CERTs)
 • Fostering the IT security research
Cyber security of nation states

- Security of nation states
 - Internal security => Legislation and law enforcement
 - External security => Diplomacy, international treaties and military forces

- International offensive actors in cyberspace exist, but
 - Currently no common definitions for cyberspace / cyber attack / ...
 - Just a few actors dominate most the technology
 - Diversity of potential actors
 - Costs of cyber attacks cheaper than "boots on the ground"
 - Many traditional security concepts and measures won't work for cyberspace
• Established measures vs. cyberspace

<table>
<thead>
<tr>
<th>Measures</th>
<th>Elements</th>
<th>Applicable for Cyber Space?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical</td>
<td>• Demilitarized Zones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thin-out Zones</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td>• Defensive Orientation of Armed Forces</td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>• Limits on Maneuvers and Exercises</td>
<td></td>
</tr>
<tr>
<td>Declaratory</td>
<td>• No first Use</td>
<td></td>
</tr>
<tr>
<td>Verification</td>
<td>• Air- or space-based sensors</td>
<td></td>
</tr>
</tbody>
</table>

Neuneck, G, "Confidence Building Measures - Application to the Cyber Domain", Lecture, 2012
Confidence and security building measures in cyberspace

- Established measures vs. cyberspace
- IT and cyberspace
 - Immaterial
 - Virtual
 - Easy to duplicate
 - No specific technical facilities necessary
 - Strong dual use character
 - Difficulties with attribution

<table>
<thead>
<tr>
<th>Measures</th>
<th>Elements</th>
<th>Applicable for Cyber Space?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical</td>
<td>• Demilitarized Zones</td>
<td>• Not possible</td>
</tr>
<tr>
<td></td>
<td>• Thin-out Zones</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td>• Defensive Orientation of Armed Forces</td>
<td>• Accept defense but prohibit offense?</td>
</tr>
<tr>
<td></td>
<td>• Limits on Maneuvers and Exercises</td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>• No first Use</td>
<td>• Prohibit offensive military exercises</td>
</tr>
<tr>
<td>Declaratory</td>
<td>• Air- or space-based sensors</td>
<td>• Unilateral declarations</td>
</tr>
<tr>
<td>Verification</td>
<td>•</td>
<td>• unlikely</td>
</tr>
</tbody>
</table>
Consequences, tasks and challenges

• Vulnerability of important systems / critical infrastructures
 • Broad evaluation of IT systems, flaws and security concepts
 • Re-Think security concepts given the reality of "omnipotent attackers"

• Effects and damages of malware are the key for their regulation
 • How to measure and classify the possible impacts of a malware?

• Better defence, but avoid concerns about better offence
 • Development for rules of engagement
 • Codes of conduct

• Cyberspace as man made domain
 • How can we create a cyberspace that support its peaceful development?
 • Technical support for trust building as well as arms control
Thanks

Thomas Reinhold
reinhold@ifsh.de
cyber-peace.org
Annex
On cyber weapons and cyber attacks

- Most of the malicious activities in cyberspace are cybercrime
 - Scope of law enforcement
- What if the protagonists are states?
 - Scope of humanitarian law and the law of armed conflicts
- What is the threshold between penetration and attack?
 - "cyber attack" is the equivalent of "armed attack" in terms of humanitarian law
- Position of the NATO CCDCODE Tallinn Manual

On cyber weapons and cyber attacks II

• What are cyber weapons and how to classify them?
 • By its technical specifications (directed, controllable, predictable use of force)
 • By the damage it cause (intended and unintended)
 • By the intention of its operators (who against whom, why, for what purpose)

• Binding definitions necessary for
 • Evaluation of concrete conflicts:
 Something is a cyber weapon if its damage equals the damage of an armed attack as defined by the UN Charta Art. 51
 • Classification for disarmament agreements, arms control and verification
 • To confine between defence and offence
Threats, damages and the fuzziness of prediction

• It's easy to vandalise random targets but hard to hit a specific one
• Military planning differs highly from criminal planning
 • Identification of possible high quality strategic targets and their weaknesses
 • Need for undetected system flaws to gain access to the systems
 • Build up a persistence in the target systems to be ready in time
 • "1 or 2 till 5 years for planning time" (Felix Lindner, Recurity Labs)
• Cyber weapons aren't cheap